BLOG

Interpreting machine learning models with the lime package for R

20-02-2019  0 Comment(s)

Many types of machine learning classifiers, not least commonly-used techniques like ensemble models and neural networks, are notoriously difficult to interpret. If the model produces a surprising label for any given case, it's difficult to answer the question, "why that label, and not one of the others?".

One approach to this dilemma is the technique known as LIME (Local Interpretable Model-Agnostic Explanations). The basic idea is that while for highly non-linear models it's impossible to give a simple explanation of the relationship between any one variable and the predicted classes at a global level, it might be possible to asses which variables are most influential on the classification at a local level, near the neighborhood of a particular data point. 

Comment Here

Comments

No Comments to Show

WE ALWAYS WORK WITH :